Page 1 of 2

The DM42 is not able to calculate 42.. ;-)

Posted: Wed Sep 11, 2019 8:05 am
by DA74254
Now that the "Numberphile" YT channel has revealed the answer to the life, the universe and everything:
https://www.youtube.com/watch?v=zyG8Vlw5aAw
I had to check it with my DM42. Well, it cannot calculate it's own self ;) :D

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Wed Sep 11, 2019 9:26 am
by Dani R.
WP43 can calculate 42 :o

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Wed Sep 11, 2019 10:39 am
by Over_score
Dani R. wrote:
Wed Sep 11, 2019 9:26 am
WP43 can calculate 42 :o
Yes WP43S can! :P

But DM42 can calculate 43 :D 12^3 + 8^3 + (-13)^3

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Wed Sep 11, 2019 2:35 pm
by Dani R.
Over_score wrote:
Wed Sep 11, 2019 10:39 am
But DM42 can calculate 43 :D 12^3 + 8^3 + (-13)^3
👍

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Thu Sep 12, 2019 7:50 am
by Dani R.
Over_score wrote:
Wed Sep 11, 2019 10:39 am
But DM42 can calculate 43 :D 12^3 + 8^3 + (-13)^3
You can simplify the example for the testSuite for 43 (2^3 + 2^3 + 3^3), but I think for 41 there is no solution.

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Thu Sep 12, 2019 10:52 am
by Over_score
Dani R. wrote:
Thu Sep 12, 2019 7:50 am
but I think for 41 there is no solution.
It seems proven that there is no solution for 41
https://en.wikipedia.org/wiki/Sums_of_three_cubes

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Sun Sep 29, 2019 9:30 am
by Jaymos
WP43* does also work the new non-trivial solution for 3 as well...

https://www.newscientist.com/article/22 ... z60nLxjc2X

WP43C shown:

Image

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Wed Feb 05, 2020 8:43 am
by gomefun2
It's probably possible to calculate this on the dm42 you'd just have to write an arbitrary precision program, then calculate it.

Assuming the problem is related to precision.

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Wed Feb 05, 2020 12:22 pm
by Walter
gomefun2 wrote:
Wed Feb 05, 2020 8:43 am
It's probably possible to calculate this on the dm42 you'd just have to write an arbitrary precision program, then calculate it.

Assuming the problem is related to precision.
Yes, it is related to precision. WP43S allows for integers with 1000 digits.

Re: The DM42 is not able to calculate 42.. ;-)

Posted: Wed Feb 05, 2020 12:36 pm
by mezoganet
Jaymos wrote:
Sun Sep 29, 2019 9:30 am
WP43* does also work the new non-trivial solution for 3 as well...

https://www.newscientist.com/article/22 ... z60nLxjc2X

WP43C shown:
Jaymos,

How can we transform a DM42 in a WP43 ?