and a demonstration NPGON, which draws some nested polygons.

LINE

y1 x1 y2 x2 -> T Z Y X

(x1, y1) (x2, y2) -> Y X

LINE2

x1 y1 x2 y2 -> T Z Y X

LINE and LINE2 draw a pixel-wide line between two points.

LINE is implemented completely on the stack and leaves all flags and non-stack registers unmolested.

It promises nothing about the stack on return.

It changes the mode to RECT, but restores it when done.

It uses the same argument order as PIXEL when identifying points and

following the same rounding and clipping behavior. It rounds arguments to the nearest integer

and will happily spend time trying to draw pixels that are off the screen.

Like PIXEL, LINE accepts complex arguments, but not in a matrix (see PATH for that).

LINE2 is a convenience function if you would prefer to supply your arguments in a different order.

LINE2 does not take complex arguments.

Others have posted horizontal and vertical line drawing routines that may be more efficient for those purposes.

My primary goal for LINE was an unsurprising interface wrt to PIXEL, and a pure stack implementation that

can be added to any program without concern.

PATH [(x1,y1), (x2,y2), ...]

PATHC [(x1,y1), (x2,y2), ...]

PATH takes a complex vector and calls LINE going from one point to another.

PATHC (closed path) connects the last point to the first.

Currently the order of points processed is undefined for multidimensional matrices.

I would like to explore support for additional data structures representing a path,

which would indicate if the pen should be up or down for each segment.

For example [ (x1,y1) 0 (x2,y2) 1 (x3, y3) 1 ...]

For these routines, the pen is always down.

NPGON - Draw nested polygons

This uses a variable menu which sets the following variables:

SIDES - number of sides for the polygons

N - number of polygons

mu - proportion of the subsequent vertex mixed into the current vertex when transforming the original polygon into the next.

In short, vertexes [ A' B' C' D' ](transpose) = [

Code: Select all

```
[ 1-mu mu 0 0 ] [ A
[ 0 1-mu mu 0 ] X B
[ 0 0 1-mu mu ] C
[mu 0 0 1-mu ]] D]
```

Set mu to 1.05 to demonstrate clipping.

Run NPGON, set and query the variables in the Variable Menu

and then press R/S to continue.

NPGON allocates an NxN real matrix for this transform.

It refers to ResX and ResY variables and uses a few numbered registers.

It cleans up the matrix variables and restores the RECT/POLAR mode when done.

LINE/LINE2

Code: Select all

```
00 { 222-Byte Prgm }
01▸LBL "LINE"
02 CPX?
03 GTO 01
04 X<>Y
05 R↓
06 R↓
07 X<>Y
08 R↓
09 R↓
10▸LBL "LINE2"
11 STO ST L
12 CLX
13 0.5
14 STO+ ST Y
15 STO+ ST Z
16 STO+ ST T
17 RCL+ ST L
18 IP
19 R↓
20 IP
21 R↓
22 IP
23 R↓
24 IP
25 R↓
26 MVAR "cxpt2"
27 FC? 73
28 GTO 02
29 RECT
30 COMPLEX
31 1ᴇ-5
32 GTO 03
33▸LBL 02
34 RECT
35 COMPLEX
36 0
37▸LBL 03
38 R↓
39 R↓
40 COMPLEX
41 STO- ST T
42 R↑
43 GTO 04
44▸LBL 01
45 -0.025
46 SQRT
47 5
48 +
49 STO+ ST Y
50 RCL+ ST Z
51 1ᴇ-5
52 FC? 73
53 CLX
54 RECT
55 X<>Y
56 COMPLEX
57 IP
58 X<>Y
59 IP
60 X<>Y
61 COMPLEX
62 RCL ST Z
63 COMPLEX
64 IP
65 X<>Y
66 IP
67 X<>Y
68 COMPLEX
69 RCL- ST Y
70 MVAR "nsteps"
71▸LBL 04
72 COMPLEX
73 X<0?
74 +/-
75 X<>Y
76 X<0?
77 +/-
78 X>Y?
79 X<>Y
80 CLX
81 LASTX
82 MVAR "normdxy"
83 X<>Y
84 X≠0?
85 STO÷ ST Y
86 MVAR "stashf"
87 RCL+ ST T
88 1
89 +
90 R↑
91▸LBL 05
92 COMPLEX
93 X<0?
94 GTO 06
95 X<>Y
96 X>0?
97 PIXEL
98▸LBL 06
99 R↓
100 CLX
101 LASTX
102 RCL+ ST Z
103 DSE ST Y
104 GTO 05
105 X<>Y
106 X≠0?
107 POLAR
108 RTN
109 MVAR "v180210"
110 END
```

Code: Select all

```
00 { 142-Byte Prgm }
01▸LBL "PATH"
02 STO "PATHMAT"
03 INDEX "PATHMAT"
04▸LBL 00
05 RCLEL
06 I+
07 FS? 77
08 GTO 01
09 RCLEL
10 XEQ "LINE"
11 GTO 00
12▸LBL 01
13 CLV "PATHMAT"
14 RTN
15 MVAR "v180210"
16 END
17▸LBL "PATHC"
18 STO "PATHMAT"
19 INDEX "PATHMAT"
20▸LBL 00
21 RCLEL
22 I+
23 FS? 77
24 GTO 01
25 RCLEL
26 XEQ "LINE"
27 GTO 00
28▸LBL 01
29 RCLEL
30 XEQ "LINE"
31 CLV "PATHMAT"
32 RTN
33 MVAR "v180210"
34 END
```

NPGON

Code: Select all

```
00 { 424-Byte Prgm }
01▸LBL "NPGON"
02 MVAR "SIDES"
03 MVAR "N"
04 MVAR "μ"
05 VARMENU "NPGON"
06 STOP
07 EXITALL
08 MVAR "saverad"
09 1
10 FC? 73
11 CLX
12 STO 00
13 RCL "SIDES"
14 1
15 NEWMAT
16 ENTER
17 COMPLEX
18 STO "NPGNP"
19 MVAR "cxangle"
20 POLAR
21 2
22 PI
23 ×
24 360
25 FS? 42
26 400
27 FS? 43
28 X<>Y
29 STO 02
30 RCL÷ "SIDES"
31 STO 03
32 1
33 X<>Y
34 COMPLEX
35 MVAR "startpt"
36 2
37 STO÷ 03
38 CLX
39 RCL "ResY"
40 2
41 ÷
42 0.95
43 ×
44 RCL "SIDES"
45 2
46 MOD
47 X=0?
48 GTO 05
49 CLX
50 RCL 02
51 4
52 ÷
53 +/-
54 GTO 06
55▸LBL 05
56 CLX
57 RCL 03
58 COS
59 ÷
60 RCL 02
61 4
62 ÷
63 +/-
64 RCL 03
65 +
66▸LBL 06
67 COMPLEX
68 MVAR "mkpoly"
69 INDEX "NPGNP"
70▸LBL 02
71 STOEL
72 RCL× ST Y
73 I+
74 FC? 77
75 GTO 02
76 MVAR "centerp"
77 RCL "NPGNP"
78 RECT
79 RCL "ResX"
80 RCL "ResY"
81 COMPLEX
82 2
83 ÷
84 STO+ "NPGNP"
85 MVAR "mktrans"
86 RCL "SIDES"
87 ENTER
88 NEWMAT
89 STO "NPGNM"
90 INDEX "NPGNM"
91▸LBL 03
92 RCLIJ
93 X≠Y?
94 GTO 04
95 1
96 RCL "μ"
97 -
98 STOEL
99 J+
100 RCL "μ"
101 STOEL
102 FS? 77
103 GTO 05
104▸LBL 04
105 J+
106 GTO 03
107▸LBL 05
108 1
109 RCL "μ"
110 -
111 STOEL
112 RCL "SIDES"
113 1
114 STOIJ
115 RCL "μ"
116 STOEL
117 MVAR "drawlp"
118 RCL "NPGNP"
119 XEQ "PATHC"
120 RCL "N"
121 1
122 -
123 STO 01
124▸LBL 01
125 RCL "NPGNM"
126 RCL "NPGNP"
127 ×
128 STO "NPGNP"
129 XEQ "PATHC"
130 DSE 01
131 GTO 01
132 CLV "NPGNP"
133 CLV "NPGNM"
134 RCL 00
135 FS? 73
136 POLAR
137 RTN
138 MVAR "v180210"
139 END
```